Sl. No.	IEEE Transaction Tiltle
1	A Novel Buck–Boost AC–AC Converter With Both Inverting and Noninverting Operations
	and Without Commutation Problem
2 3	High-Gain Single-Stage Boosting Inverter for Photovoltaic Applications
3	A Novel High Step-Up Dual Switches Converter With Coupled Inductor and Voltage
	Multiplier Cell for a Renewable Energy System
4	Single-Phase to Three-Phase Converters With Two Parallel Single-Phase Rectifiers and
	Reduced Switch Count
5 6	A Dual-Transformer Active-Clamp Forward Converter With Nonlinear Conversion Ratio
	A New Hybrid Boosting Converter for Renewable Energy Applications
7	Double-Deck Buck-Boost Converter With Soft Switching Operation
8	An Open-Switch Fault Diagnosis Method for Single-Phase PWM Rectifier Using a Model-
	Based Approach in High-Speed Railway Electrical Traction Drive System
9	A ZVS Grid-Connected Full-Bridge Inverter With a Novel ZVS SPWM Scheme
10	A Modified SEPIC Converter for High-Power-Factor Rectifier and Universal Input Voltage
	Applications
11	A Modified Dual Active Bridge Converter With Hybrid Phase-Shift Control for Wide Input
10	Voltage Range
12	Improved ZVS Three-Level DC–DC Converter With Reduced Circulating Loss
13	High-Efficiency Coupled-Inductor-Based Step-Down Converter
14	A Family of Isolated Buck-Boost Converters Based on Semiactive Rectifiers for High-Output
1.7	Voltage Applications
15	Modular Cascaded H-Bridge Multilevel PV Inverter With Distributed MPPT for Grid- Connected Applications
16	A Family of Soft-Switching DC–DC Converters Based on a Phase-Shift-Controlled Active
10	Boost Rectifier
17	A Family of Zero-Current Transition Transformerless Photovoltaic Grid-Connected Inverter
1/	
18	A Fully Integrated Three-Level Isolated Single-Stage PFC Converter
-	
19	A High Gain Input-Parallel Output-Series DC/DC Converter With Dual Coupled Inductors
20	A High Step-Up DC to DC Converter Under Alternating Phase Shift Control for Fuel Cell
	Power System
21	A New Interleaved Three Phase Single Stage DEC AC, DC Converter With Elving Conseitor
21	A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter With Flying Capacitor
22	A Novel High Step-up DC/DC Converter Based on Integrating Coupled Inductor and
	Switched-Capacitor Techniques for Renewable Energy Applications

23	A Novel Load Adaptive ZVS Auxiliary Circuit for PWM Three-Level DC-DC Converters
24	A Dual-Active Bridge Topology With a Tuned CLC Network
25	A Quasi-Unipolar SPWM Full-Bridge Transformerless PV Grid-Connected Inverter with Constant Common-Mode Voltage
26	A Step-up Resonant Converter for Grid-Connected Renewable Energy Sources
27	Derivation, Analysis, and Comparison of Nonisolated Single-Switch High Step-up Converters With Low Voltage Stress
28	High-Frequency-Fed Unity Power-Factor AC–DC Power Converter With One Switching Per Cycle
29	High-Power-Factor Rectifier Using the Modified SEPIC Converter Operating in Discontinuous Conduction Mode
30	Hybrid Transformer ZVS/ZCS DC–DC Converter With Optimized Magnetics and Improved Power Devices Utilization for Photovoltaic Module Applications
31	Hybrid-Type Full-Bridge DC/DC Converter With High Efficiency
32	Interleaved Phase-Shift Full-Bridge Converter With Transformer Winding Series–Parallel Autoregulated (SPAR) Current Doubler Rectifier
33	Naturally Clamped Zero-Current Commutated Soft-Switching Current-Fed Push–Pull DC/DC Converter: Analysis, Design, and Experimental Results
34	Optimal Design of DCM LCC Resonant Converter With Inductive Filter Based on Mode Boundary Map
35	Resonance Analysis and Soft-Switching Design of Isolated Boost Converter With Coupled Inductors for Vehicle Inverter Application
36	Soft-Switching Bidirectional Isolated Full-Bridge Converter With Active and Passive Snubbers
37	DC/DC Buck Power Converter as a Smooth Starter for a DC Motor based on a Hierarchical Control
38	An Adjustable-Speed PFC Bridgeless Buck–Boost Converter-Fed BLDC Motor Drive
39	A Novel Single-Phase AC-AC Converter for Circuit Breaker Testing Application
40	New ZVS DC–DC Converter With Series-Connected Transformers to Balance the Output Currents
41	High-Voltage Gain Boost Converter Based on Three-State Commutation Cell for Battery Charging Using PV Panels in a Single Conversion Stage
42	Current Control Methods for an Asymmetrical Six-Phase Induction Motor Drive
43	An Analytical Steady-State Model of LCC type Series–Parallel Resonant Converter With Capacitive Output Filter

44	Fast Transient Boundary Control and Steady-State Operation of the Dual Active Bridge Converter Using the Natural Switching Surface
45	Active Harmonic Filtering Using Current-Controlled, Grid-Connected DG Units With Closed-Loop Power Control
46	New Extendable Single-Stage Multi-input DC-DC/AC Boost Converter
47	Efficiency Optimization Through Current-Sharing for Paralleled DC–DC Boost Converters With Parameter Estimation
48	Optimal Trajectory Control of LLC Resonant Converters for LED PWM Dimming
49	Closed-Loop Control of DC–DC Dual-Active-Bridge Converters Driving Single-Phase Inverters
50	A Half-Bridge LLC Resonant Converter Adopting Boost PWM Control Scheme for Hold-Up State Operation
51	Improved Active Power Filter Performance for Renewable Power Generation Systems
52	An Optimal Minimum-Component DC–DC Converter Input Filter Design and Its Stability Analysis
53	High Efficiency Resonant DC/DC Converter Utilizing a Resistance Compression Network
54	New Bidirectional Intelligent Semiconductor Transformer for Smart Grid Application
55	Analysis and Design of a New Soft-Switching Boost Converter With a Coupled Inductor
56	A New LLC Series Resonant Converter witha Narrow Switching Frequency Variation andReduced Conduction Losses
57	Virtual Quadrature Source-Based Sinusoidal Modulation Applied to High-Frequency Link Converter Enabling Arbitrary Direct AC-AC Power Conversion
58	Single-Stage Multistring PV Inverter With an Isolated High-Frequency Link and Soft- Switching Operation
59	Modeling of the High-Frequency Rectifier With 10-kV SiC JBS Diodes in High-Voltage SeriesResonant Type DC–DC Converters
60	Improved Instantaneous Current Control for High-Power Three-Phase Dual-Active Bridge VDC–DC Converters
61	System Integration and Hierarchical PowerManagement Strategy for a Solid-State TransformerInterfaced Microgrid System
62	A Load-Power Adaptive Dual Pulse Modulated Current Phasor-Controlled ZVS High- Frequency Resonant Inverter for Induction Heating Applications
63	Overview of Dual-Active-Bridge IsolatedBidirectional DC–DC Converter forHigh- Frequency-Link Power-Conversion System
64	Stability and Voltage Balance Control of aModular Converter With MultiwindingHigh- Frequency Transformer

65	Isolated ZVS High-Frequency-Link AC-ACConverter With a Reduced Switch Count
66	A LLC-Type Dual-Bridge Resonant Converter:Analysis, Design, Simulation,and Experimental Results
67	The High-Efficiency Isolated AC–DC ConverterUsing the Three-Phase Interleaved LLC ResonantConverter Employing the Y-Connected Rectifier
68	A Bidirectional High-Frequency-Link Single-phaseInverter: Modulation, Modeling, and Control
69	High-Frequency-Link Soft-Switching PWM DC–DCConverter for EV On-Board Battery Chargers
70	A Cascaded Multilevel Inverter Basedon Switched-Capacitor for High-FrequencyAC Power Distribution System
71	Optimal ZVS Modulation of Single-PhaseSingle-Stage Bidirectional DAB AC–DC Converters
72	A Soft-Switched Hybrid-Modulation Schemefor a Capacitor-Less Three-PhasePulsating-DC- Link Inverter
73	Hybrid Dual Full-Bridge DC–DC Converter With Reduced Circulating Current, Output Filter, and Conduction Loss of Rectifier Stage for RF Power Generator Application
74	A New ZCS-PWM Full-Bridge DC–DC Converter With Simple Auxiliary Circuits
75	A Novel Three-Phase Buck–Boost AC–DC Converter
76	A Novel Reduced Switching Loss Bidirectional AC/DC Converter PWM Strategy With Feedforward Control for Grid-Tied Microgrid Systems
77	Novel Zero-Voltage and Zero-Current Switching (ZVZCS) PWM Three-Level DC/DC Converter Using Output Coupled Inductor
78	Research on a Novel Modulation Strategy for Auxiliary Resonant Commutated Pole Inverter With
79	H6 Transformerless Full-Bridge PV Grid-Tied Inverters
80	High Efficiency Photovoltaic Source Simulator withFast Response Time for Solar Power ConditioningSystems Evaluation
81	Novel Loss and Harmonic Minimized VectorModulation for a Current-Fed Quasi-Z-Source Inverter in HEV Motor Drive Application
82	Switching Frequency Derivation for the Cascaded Multilevel Inverter Operating in Current Control Mode Using Multiband Hysteresis Modulation
83	A Four-level Hybrid-Clamped Converter With Natural Capacitor Voltage Balancing Ability
84	A Novel Soft-Switching Multiport Bidirectional DC–DC Converter for Hybrid Energy Storage System
85	Zero Voltage Switching Technique for Bidirectional DC/DC Converters

86	Transformerless Inverter With Virtual DC Bus Concept for Cost-Effective Grid-Connected PV Power Systems
87	Sensitivity-Analysis-Based Sliding Mode Control for Voltage Regulation in Microgrids
88	Analysis and Enhancement of Low-Voltage Ride-Through Capability of Brushless Doubly Fed Induction Generator
89	A Novel Converter Topology for Stand-Alone Hybrid PV/Wind/Battery Power System usingMatlab/Simulink
90	Analysis and Implementation of a Bidirectional Double-Boost DC-DC Converter
91	Applying Coupled Inductor to Step-Up Converter Constructed by KY and Buck-Boost Converters
92	Design, Analysis and Simulation of Linear Controller of a STATCOM for Reactive Power Compensation on Variation of DC link Voltage
93	Grid Connected Single Phase Rooftop PV System with Limited Reactive Power Supply
94	Characteristic Evaluation for Bi-directional DC-DC Converter with Soft Switching
95	Common-Mode Voltage Reduction Pulsewidth Modulation Techniques for Three-Phase Grid- Connected Converters
96	Improving the Dynamic Response of a Flying-Capacitor Three-Level Buck Converter
97	Vector-Controlled Voltage-Source-Converter-Based Transmission Under Grid Disturbances
98	High-Efficiency DC-DC Converter With Fast Dynamic Response for Low-Voltage Photovoltaic Sources
99	A High Step-Down Transformerless Single-Stage Single-Switch AC/DC Converter
100	Modified High-Efficiency LLC Converter with Two Transformers for Wide Input Voltage Range Applications